Compare commits

..

13 Commits

Author SHA1 Message Date
428b577808 更新接口 2025-10-25 14:31:55 +08:00
15a83a5f06 出入库记录上线 2025-10-19 22:42:30 +08:00
418f7f3bc9 费用计算及确认系统上线 2025-10-19 22:29:55 +08:00
a99e8fccb2 再次修复了车牌判断的bug 2025-10-19 20:21:21 +08:00
40f5e1c1be 修复了车牌判断的bug 2025-10-19 19:10:10 +08:00
c1fbccd7ee 删一下缓存 2025-10-19 18:05:46 +08:00
d649738f6c 道闸管理上线 2025-10-19 18:03:57 +08:00
6831a8cd01 更新接口 2025-10-18 18:56:02 +08:00
cf60d96066 更新接口 2025-10-18 18:21:30 +08:00
09c3117f12 更新接口 2025-10-18 11:20:11 +08:00
2a77e6ca8a Merge pull request '图片与视频' (#6) from main-v2 into main
Reviewed-on: https://gitea.spdis.top/spdis/License_plate_recognition/pulls/6
2025-10-14 13:22:43 +08:00
56e7347c01 6666666 2025-09-04 01:50:49 +08:00
1c8e15bcd8 更新接口 2025-09-04 00:10:18 +08:00
22 changed files with 2069 additions and 586 deletions

8
.idea/.gitignore generated vendored
View File

@@ -1,8 +0,0 @@
# 默认忽略的文件
/shelf/
/workspace.xml
# 基于编辑器的 HTTP 客户端请求
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="cnm" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

7
.idea/misc.xml generated
View File

@@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="pytorh" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="cnm" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml generated
View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/License_plate_recognition.iml" filepath="$PROJECT_DIR$/.idea/License_plate_recognition.iml" />
</modules>
</component>
</project>

7
.idea/vcs.xml generated
View File

@@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

View File

@@ -1,372 +0,0 @@
# 导入必要的库
import torch
import torch.nn as nn
import cv2
import numpy as np
import os
import sys
from torch.autograd import Variable
from PIL import Image
# 添加父目录到路径,以便导入模型和数据加载器
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# LPRNet字符集定义与训练时保持一致
# 包含中国省份简称、数字、字母和特殊字符
CHARS = ['', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-']
# 创建字符到索引的映射字典
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
# 简化的LPRNet模型定义 - 基础卷积块
class small_basic_block(nn.Module):
def __init__(self, ch_in, ch_out):
super(small_basic_block, self).__init__()
# 定义一个小的基本卷积块,包含四个卷积层
self.block = nn.Sequential(
# 1x1卷积降低通道数
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
nn.ReLU(),
# 3x1卷积处理水平特征
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
nn.ReLU(),
# 1x3卷积处理垂直特征
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
# 1x1卷积恢复通道数
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
)
def forward(self, x):
return self.block(x)
# LPRNet模型定义 - 车牌识别网络
class LPRNet(nn.Module):
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
super(LPRNet, self).__init__()
self.phase = phase
self.lpr_max_len = lpr_max_len
self.class_num = class_num
# 定义主干网络
self.backbone = nn.Sequential(
# 初始卷积层
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
nn.BatchNorm2d(num_features=64),
nn.ReLU(), # 2
# 最大池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
# 第一个基本块
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
nn.BatchNorm2d(num_features=128),
nn.ReLU(), # 6
# 第二个池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
# 第二个基本块
small_basic_block(ch_in=64, ch_out=256), # 8
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 10
# 第三个基本块
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 13
# 第三个池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
# Dropout层防止过拟合
nn.Dropout(dropout_rate),
# 特征提取卷积层
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 18
# 第二个Dropout层
nn.Dropout(dropout_rate),
# 分类卷积层
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
nn.BatchNorm2d(num_features=class_num),
nn.ReLU(), # 22
)
# 定义容器层,用于融合全局上下文信息
self.container = nn.Sequential(
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
)
def forward(self, x):
# 保存中间特征
keep_features = list()
for i, layer in enumerate(self.backbone.children()):
x = layer(x)
# 保存特定层的输出特征
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
keep_features.append(x)
# 处理全局上下文信息
global_context = list()
for i, f in enumerate(keep_features):
# 对不同层的特征进行不同尺度的平均池化
if i in [0, 1]:
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
if i in [2]:
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
# 对特征进行归一化处理
f_pow = torch.pow(f, 2)
f_mean = torch.mean(f_pow)
f = torch.div(f, f_mean)
global_context.append(f)
# 拼接全局上下文特征
x = torch.cat(global_context, 1)
# 通过容器层处理
x = self.container(x)
# 对序列维度进行平均,得到最终输出
logits = torch.mean(x, dim=2)
return logits
# LPRNet推理类
class LPRNetInference:
def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
"""
初始化LPRNet推理类
Args:
model_path: 训练好的模型权重文件路径
img_size: 输入图像尺寸 [width, height]
lpr_max_len: 车牌最大长度
dropout_rate: dropout率
"""
self.img_size = img_size
self.lpr_max_len = lpr_max_len
# 检测是否有可用的CUDA设备
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 设置默认模型路径
if model_path is None:
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, 'LPRNet__iteration_74000.pth')
# 初始化模型
self.model = LPRNet(lpr_max_len=lpr_max_len, phase=False, class_num=len(CHARS), dropout_rate=dropout_rate)
# 加载模型权重
if model_path and os.path.exists(model_path):
print(f"Loading LPRNet model from {model_path}")
try:
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
print("LPRNet模型权重加载成功")
except Exception as e:
print(f"Warning: 加载模型权重失败: {e}. 使用随机权重.")
else:
print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
# 将模型移动到指定设备并设置为评估模式
self.model.to(self.device)
self.model.eval()
print(f"LPRNet模型加载完成设备: {self.device}")
print(f"模型参数数量: {sum(p.numel() for p in self.model.parameters()):,}")
def preprocess_image(self, image_array):
"""
预处理图像数组 - 使用与训练时相同的预处理方式
Args:
image_array: numpy数组格式的图像 (H, W, C)
Returns:
preprocessed_image: 预处理后的图像tensor
"""
if image_array is None:
raise ValueError("Input image is None")
# 确保图像是numpy数组
if not isinstance(image_array, np.ndarray):
raise ValueError("Input must be numpy array")
# 检查图像维度
if len(image_array.shape) != 3:
raise ValueError(f"Expected 3D image array, got {len(image_array.shape)}D")
height, width, channels = image_array.shape
if channels != 3:
raise ValueError(f"Expected 3 channels, got {channels}")
# 调整图像尺寸到模型要求的尺寸
if height != self.img_size[1] or width != self.img_size[0]:
image_array = cv2.resize(image_array, tuple(self.img_size))
# 使用与训练时相同的预处理方式
# 归一化处理减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
image_array = image_array.astype('float32')
image_array -= 127.5
image_array *= 0.0078125
# 调整维度顺序从HWC到CHW
image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
# 转换为tensor并添加batch维度
image_tensor = torch.from_numpy(image_array).unsqueeze(0)
return image_tensor
def decode_prediction(self, logits):
"""
解码模型预测结果 - 使用正确的CTC贪婪解码
Args:
logits: 模型输出的logits [batch_size, num_classes, sequence_length]
Returns:
predicted_text: 预测的车牌号码
"""
# 转换为numpy进行处理
prebs = logits.cpu().detach().numpy()
preb = prebs[0, :, :] # 取第一个batch [num_classes, sequence_length]
# 贪婪解码: 对每个时间步选择最大概率的字符
preb_label = []
for j in range(preb.shape[1]): # 遍历每个时间步
preb_label.append(np.argmax(preb[:, j], axis=0))
# CTC解码去除重复字符和空白字符
no_repeat_blank_label = []
pre_c = preb_label[0]
# 处理第一个字符
if pre_c != len(CHARS) - 1: # 不是空白字符
no_repeat_blank_label.append(pre_c)
# 处理后续字符
for c in preb_label:
if (pre_c == c) or (c == len(CHARS) - 1): # 重复字符或空白字符
if c == len(CHARS) - 1:
pre_c = c
continue
no_repeat_blank_label.append(c)
pre_c = c
# 转换为字符
decoded_chars = [CHARS[idx] for idx in no_repeat_blank_label]
return ''.join(decoded_chars)
def predict(self, image_array):
"""
预测单张图像的车牌号码
Args:
image_array: numpy数组格式的图像
Returns:
prediction: 预测的车牌号码
confidence: 预测置信度
"""
try:
# 预处理图像
image = self.preprocess_image(image_array)
if image is None:
return None, 0.0
image = image.to(self.device)
# 模型推理
with torch.no_grad():
logits = self.model(image)
# logits shape: [batch_size, class_num, sequence_length]
# 计算置信度使用softmax后的最大概率平均值
probs = torch.softmax(logits, dim=1)
max_probs = torch.max(probs, dim=1)[0]
confidence = torch.mean(max_probs).item()
# 解码预测结果
prediction = self.decode_prediction(logits)
return prediction, confidence
except Exception as e:
print(f"预测图像失败: {e}")
return None, 0.0
# 全局变量,用于存储模型实例
lpr_model = None
def LPRNinitialize_model():
"""
初始化LPRNet模型
返回:
bool: 初始化是否成功
"""
global lpr_model
try:
# 模型权重文件路径
model_path = os.path.join(os.path.dirname(__file__), 'LPRNet__iteration_74000.pth')
# 创建推理对象
lpr_model = LPRNetInference(model_path)
print("LPRNet模型初始化完成")
return True
except Exception as e:
print(f"LPRNet模型初始化失败: {e}")
import traceback
traceback.print_exc()
return False
def LPRNmodel_predict(image_array):
"""
LPRNet车牌号识别接口函数
参数:
image_array: numpy数组格式的车牌图像已经过矫正处理
返回:
list: 包含最多8个字符的列表代表车牌号的每个字符
例如: ['', 'A', '1', '2', '3', '4', '5'] (蓝牌7位)
['', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
"""
global lpr_model
if lpr_model is None:
print("LPRNet模型未初始化请先调用LPRNinitialize_model()")
return ['', '', '', '0', '0', '0', '0', '0']
try:
# 使用OpenCV调整图像大小到模型要求的尺寸
image_array = cv2.resize(image_array, (94, 24))
print(f"666999图片尺寸: {image_array.shape}")
# 显示修正后的图像
cv2.imshow('Resized License Plate Image (94x24)', image_array)
cv2.waitKey(1) # 非阻塞显示,允许程序继续执行
# 预测车牌号
predicted_text, confidence = lpr_model.predict(image_array)
if predicted_text is None:
print("LPRNet识别失败")
return ['', '', '', '', '0', '0', '0', '0']
print(f"LPRNet识别结果: {predicted_text}, 置信度: {confidence:.3f}")
# 将字符串转换为字符列表
char_list = list(predicted_text)
# 确保返回至少7个字符最多8个字符
if len(char_list) < 7:
# 如果识别结果少于7个字符用'0'补齐到7位
char_list.extend(['0'] * (7 - len(char_list)))
elif len(char_list) > 8:
# 如果识别结果多于8个字符截取前8个
char_list = char_list[:8]
# 如果是7位补齐到8位以保持接口一致性第8位用空字符或占位符
if len(char_list) == 7:
char_list.append('') # 添加空字符作为第8位占位符
return char_list
except Exception as e:
print(f"LPRNet识别失败: {e}")
import traceback
traceback.print_exc()
return ['', '', '', '', '0', '0', '0', '0']

69
communicate.py Normal file
View File

@@ -0,0 +1,69 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
向Hi3861设备发送JSON命令
"""
import socket
import json
import time
import pyttsx3
import threading
target_ip = "192.168.43.12"
target_port = 8081
def speak_text(text):
"""
使用文本转语音播放文本
每次调用都创建新的引擎实例以避免并发问题
"""
def _speak():
try:
if text and text.strip(): # 确保文本不为空
# 在线程内部创建新的引擎实例
engine = pyttsx3.init()
# 设置语音速度
engine.setProperty('rate', 150)
# 设置音量0.0到1.0
engine.setProperty('volume', 0.8)
engine.say(text)
engine.runAndWait()
# 清理引擎
engine.stop()
del engine
except Exception as e:
print(f"语音播放失败: {e}")
# 在新线程中播放语音,避免阻塞
speech_thread = threading.Thread(target=_speak)
speech_thread.daemon = True
speech_thread.start()
def send_command(cmd, text):
#cmd为1道闸打开十秒后关闭,oled显示字符串信息默认使用及cmd为4
#cmd为2道闸舵机向打开方向旋转90度oled上不显示仅在qt界面手动开闸时调用
#cmd为3道闸舵机向关闭方向旋转90度oled上不显示仅在qt界面手动关闸时调用
#cmd为4oled显示字符串信息道闸舵机不旋转
command = {
"cmd": cmd,
"text": text
}
json_command = json.dumps(command, ensure_ascii=False)
try:
# 创建UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(json_command.encode('utf-8'), (target_ip, target_port))
# 发送命令后播放语音
if text and text.strip():
speak_text(text)
except Exception as e:
print(f"发送命令失败: {e}")
finally:
sock.close()

251
gate_control.py Normal file
View File

@@ -0,0 +1,251 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
道闸控制模块
负责与Hi3861设备通信控制道闸开关
"""
import socket
import json
import time
from datetime import datetime, timedelta
from PyQt5.QtCore import QObject, pyqtSignal, QThread
class GateControlThread(QThread):
"""道闸控制线程,用于异步发送命令"""
command_sent = pyqtSignal(str, bool) # 信号:命令内容,是否成功
def __init__(self, ip, port, command):
super().__init__()
self.ip = ip
self.port = port
self.command = command
def run(self):
"""发送命令到Hi3861设备"""
try:
# 创建UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 发送命令
json_command = json.dumps(self.command, ensure_ascii=False)
sock.sendto(json_command.encode('utf-8'), (self.ip, self.port))
# 发出成功信号
self.command_sent.emit(json_command, True)
except Exception as e:
# 发出失败信号
self.command_sent.emit(f"发送失败: {e}", False)
finally:
sock.close()
class GateController(QObject):
"""道闸控制器"""
# 信号
log_message = pyqtSignal(str) # 日志消息
gate_opened = pyqtSignal(str) # 道闸打开信号,附带车牌号
def __init__(self, ip="192.168.43.12", port=8081):
super().__init__()
self.ip = ip
self.port = port
self.last_pass_times = {} # 记录车牌上次通过时间
self.thread_pool = [] # 线程池
def send_command(self, cmd, text=""):
"""
发送命令到道闸
参数:
cmd: 命令类型 (1-4)
text: 显示文本
返回:
bool: 是否发送成功
"""
# 创建JSON命令
command = {
"cmd": cmd,
"text": text
}
# 创建并启动线程发送命令
thread = GateControlThread(self.ip, self.port, command)
thread.command_sent.connect(self.on_command_sent)
thread.start()
self.thread_pool.append(thread)
# 记录日志
cmd_desc = {
1: "自动开闸(10秒后关闭)",
2: "手动开闸",
3: "手动关闸",
4: "仅显示信息"
}
self.log_message.emit(f"发送命令: {cmd_desc.get(cmd, '未知命令')} - {text}")
return True
def on_command_sent(self, message, success):
"""命令发送结果处理"""
if success:
self.log_message.emit(f"命令发送成功: {message}")
else:
self.log_message.emit(f"命令发送失败: {message}")
def auto_open_gate(self, plate_number):
"""
自动开闸(检测到白名单车牌时调用)
参数:
plate_number: 车牌号
"""
# 获取当前时间
current_time = datetime.now()
time_diff_str = ""
# 检查是否是第一次通行
if plate_number in self.last_pass_times:
# 第二次或更多次通行,计算时间差
last_time = self.last_pass_times[plate_number]
time_diff = current_time - last_time
# 格式化时间差
total_seconds = int(time_diff.total_seconds())
minutes = total_seconds // 60
seconds = total_seconds % 60
if minutes > 0:
time_diff_str = f" {minutes}min{seconds}sec"
else:
time_diff_str = f" {seconds}sec"
# 计算时间差后清空之前记录的时间点
del self.last_pass_times[plate_number]
log_msg = f"检测到白名单车牌: {plate_number},自动开闸{time_diff_str},已清空时间记录"
else:
# 第一次通行,只记录时间,不计算时间差
self.last_pass_times[plate_number] = current_time
log_msg = f"检测到白名单车牌: {plate_number},首次通行,已记录时间"
# 发送开闸命令
display_text = f"{plate_number} 通行{time_diff_str}"
self.send_command(1, display_text)
# 发出信号
self.gate_opened.emit(plate_number)
# 记录日志
self.log_message.emit(log_msg)
def manual_open_gate(self):
"""手动开闸"""
self.send_command(2, "")
self.log_message.emit("手动开闸")
def manual_close_gate(self):
"""手动关闸"""
self.send_command(3, "")
self.log_message.emit("手动关闸")
def display_message(self, text):
"""仅显示信息,不控制道闸"""
self.send_command(4, text)
self.log_message.emit(f"显示信息: {text}")
def deny_access(self, plate_number):
"""
拒绝通行(检测到非白名单车牌时调用)
参数:
plate_number: 车牌号
"""
self.send_command(4, f"{plate_number} 禁止通行")
self.log_message.emit(f"检测到非白名单车牌: {plate_number},拒绝通行")
class WhitelistManager(QObject):
"""白名单管理器"""
# 信号
whitelist_changed = pyqtSignal(list) # 白名单变更信号
def __init__(self):
super().__init__()
self.whitelist = [] # 白名单车牌列表
def add_plate(self, plate_number):
"""
添加车牌到白名单
参数:
plate_number: 车牌号
返回:
bool: 是否添加成功
"""
if not plate_number or plate_number in self.whitelist:
return False
self.whitelist.append(plate_number)
self.whitelist_changed.emit(self.whitelist.copy())
return True
def remove_plate(self, plate_number):
"""
从白名单移除车牌
参数:
plate_number: 车牌号
返回:
bool: 是否移除成功
"""
if plate_number in self.whitelist:
self.whitelist.remove(plate_number)
self.whitelist_changed.emit(self.whitelist.copy())
return True
return False
def edit_plate(self, old_plate, new_plate):
"""
编辑白名单中的车牌
参数:
old_plate: 原车牌号
new_plate: 新车牌号
返回:
bool: 是否编辑成功
"""
if old_plate in self.whitelist and new_plate not in self.whitelist:
index = self.whitelist.index(old_plate)
self.whitelist[index] = new_plate
self.whitelist_changed.emit(self.whitelist.copy())
return True
return False
def is_whitelisted(self, plate_number):
"""
检查车牌是否在白名单中
参数:
plate_number: 车牌号
返回:
bool: 是否在白名单中
"""
return plate_number in self.whitelist
def get_whitelist(self):
"""获取白名单副本"""
return self.whitelist.copy()
def clear_whitelist(self):
"""清空白名单"""
self.whitelist.clear()
self.whitelist_changed.emit(self.whitelist.copy())

Binary file not shown.

View File

@@ -0,0 +1,546 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
from torchvision import transforms
import os
import math
# 全局变量
lightcrnn_model = None
lightcrnn_decoder = None
lightcrnn_preprocessor = None
device = None
class DepthwiseSeparableConv(nn.Module):
"""深度可分离卷积"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(DepthwiseSeparableConv, self).__init__()
# 深度卷积
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=in_channels, bias=False)
# 逐点卷积
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU6(inplace=True)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
x = self.bn(x)
x = self.relu(x)
return x
class ChannelAttention(nn.Module):
"""通道注意力机制"""
def __init__(self, in_channels, reduction=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return x * self.sigmoid(out)
class InvertedResidual(nn.Module):
"""MobileNetV2的倒残差块"""
def __init__(self, in_channels, out_channels, stride=1, expand_ratio=6):
super(InvertedResidual, self).__init__()
self.stride = stride
self.use_residual = stride == 1 and in_channels == out_channels
hidden_dim = int(round(in_channels * expand_ratio))
layers = []
if expand_ratio != 1:
# 扩展层
layers.extend([
nn.Conv2d(in_channels, hidden_dim, 1, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True)
])
# 深度卷积
layers.extend([
nn.Conv2d(hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# 线性瓶颈
nn.Conv2d(hidden_dim, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_residual:
return x + self.conv(x)
else:
return self.conv(x)
class LightweightCNN(nn.Module):
"""增强版轻量化CNN特征提取器"""
def __init__(self, num_channels=3):
super(LightweightCNN, self).__init__()
# 初始卷积层 - 适当增加通道数
self.conv1 = nn.Sequential(
nn.Conv2d(num_channels, 48, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(48),
nn.ReLU6(inplace=True)
)
# 增强版MobileNet风格的特征提取
self.features = nn.Sequential(
# 第一组48 -> 32
InvertedResidual(48, 32, stride=1, expand_ratio=2),
InvertedResidual(32, 32, stride=1, expand_ratio=2), # 增加一层
nn.MaxPool2d(kernel_size=2, stride=2), # 32x128 -> 16x64
# 第二组32 -> 48
InvertedResidual(32, 48, stride=1, expand_ratio=4),
InvertedResidual(48, 48, stride=1, expand_ratio=4),
nn.MaxPool2d(kernel_size=2, stride=2), # 16x64 -> 8x32
# 第三组48 -> 64
InvertedResidual(48, 64, stride=1, expand_ratio=4),
InvertedResidual(64, 64, stride=1, expand_ratio=4),
# 第四组64 -> 96
InvertedResidual(64, 96, stride=1, expand_ratio=4),
InvertedResidual(96, 96, stride=1, expand_ratio=4),
nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)), # 8x32 -> 4x32
# 第五组96 -> 128
InvertedResidual(96, 128, stride=1, expand_ratio=4),
InvertedResidual(128, 128, stride=1, expand_ratio=4),
nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)), # 4x32 -> 2x32
# 最后的卷积层 - 增加通道数
nn.Conv2d(128, 160, kernel_size=2, stride=1, padding=0, bias=False), # 2x32 -> 1x31
nn.BatchNorm2d(160),
nn.ReLU6(inplace=True)
)
# 通道注意力
self.channel_attention = ChannelAttention(160)
def forward(self, x):
x = self.conv1(x)
x = self.features(x)
x = self.channel_attention(x)
return x
class LightweightGRU(nn.Module):
"""增强版轻量化GRU层"""
def __init__(self, input_size, hidden_size, num_layers=2): # 默认增加到2层
super(LightweightGRU, self).__init__()
self.gru = nn.GRU(input_size, hidden_size, num_layers=num_layers,
bidirectional=True, batch_first=True, dropout=0.2 if num_layers > 1 else 0)
# 增加一个额外的线性层
self.linear1 = nn.Linear(hidden_size * 2, hidden_size * 2)
self.linear2 = nn.Linear(hidden_size * 2, hidden_size)
self.dropout = nn.Dropout(0.2) # 增加dropout率
self.norm = nn.LayerNorm(hidden_size) # 添加层归一化
def forward(self, x):
gru_out, _ = self.gru(x)
output = self.linear1(gru_out)
output = F.relu(output) # 添加激活函数
output = self.dropout(output)
output = self.linear2(output)
output = self.norm(output) # 应用层归一化
output = self.dropout(output)
return output
class LightweightCRNN(nn.Module):
"""增强版轻量化CRNN模型"""
def __init__(self, img_height, num_classes, num_channels=3, hidden_size=160): # 调整隐藏层大小
super(LightweightCRNN, self).__init__()
self.img_height = img_height
self.num_classes = num_classes
self.hidden_size = hidden_size
# 增强版轻量化CNN特征提取器
self.cnn = LightweightCNN(num_channels)
# 增强版轻量化RNN序列建模器
self.rnn = LightweightGRU(160, hidden_size, num_layers=2) # 使用更大的输入尺寸和2层GRU
# 输出层 - 添加额外的全连接层
self.fc = nn.Linear(hidden_size, hidden_size // 2)
self.dropout = nn.Dropout(0.2)
self.classifier = nn.Linear(hidden_size // 2, num_classes)
# 初始化权重
self._initialize_weights()
def _initialize_weights(self):
"""初始化模型权重"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, input):
"""
input: [batch_size, channels, height, width]
output: [seq_len, batch_size, num_classes]
"""
# CNN特征提取
conv_features = self.cnn(input) # [batch_size, 160, 1, seq_len]
# 重塑为RNN输入格式
batch_size, channels, height, width = conv_features.size()
assert height == 1, f"Height should be 1, got {height}"
# [batch_size, 160, 1, seq_len] -> [batch_size, seq_len, 160]
conv_features = conv_features.squeeze(2) # [batch_size, 160, seq_len]
conv_features = conv_features.permute(0, 2, 1) # [batch_size, seq_len, 160]
# RNN序列建模
rnn_output = self.rnn(conv_features) # [batch_size, seq_len, hidden_size]
# 全连接层处理
fc_output = self.fc(rnn_output) # [batch_size, seq_len, hidden_size//2]
fc_output = F.relu(fc_output)
fc_output = self.dropout(fc_output)
# 分类
output = self.classifier(fc_output) # [batch_size, seq_len, num_classes]
# 转换为CTC期望的格式: [seq_len, batch_size, num_classes]
output = output.permute(1, 0, 2)
return output
class LightCTCDecoder:
"""轻量化CTC解码器"""
def __init__(self):
# 中国车牌字符集
# 省份简称
provinces = ['', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '']
# 字母包含I和O
letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
# 数字
digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# 组合所有字符
self.character = provinces + letters + digits
# 添加空白字符用于CTC
self.character = ['[blank]'] + self.character
# 创建字符到索引的映射
self.dict = {char: i for i, char in enumerate(self.character)}
self.dict_reverse = {i: char for i, char in enumerate(self.character)}
self.num_classes = len(self.character)
self.blank_idx = 0
def decode_greedy(self, predictions):
"""贪婪解码"""
# 获取每个时间步的最大概率索引
indices = torch.argmax(predictions, dim=1)
# CTC解码移除重复字符和空白字符
decoded_chars = []
prev_idx = -1
for idx in indices:
idx = idx.item()
if idx != prev_idx and idx != self.blank_idx:
if idx < len(self.character):
decoded_chars.append(self.character[idx])
prev_idx = idx
return ''.join(decoded_chars)
def decode_with_confidence(self, predictions):
"""解码并返回置信度信息"""
# 应用softmax获得概率
probs = torch.softmax(predictions, dim=1)
# 贪婪解码
indices = torch.argmax(probs, dim=1)
max_probs = torch.max(probs, dim=1)[0]
# CTC解码
decoded_chars = []
char_confidences = []
prev_idx = -1
for i, idx in enumerate(indices):
idx = idx.item()
confidence = max_probs[i].item()
if idx != prev_idx and idx != self.blank_idx:
if idx < len(self.character):
decoded_chars.append(self.character[idx])
char_confidences.append(confidence)
prev_idx = idx
text = ''.join(decoded_chars)
avg_confidence = np.mean(char_confidences) if char_confidences else 0.0
return text, avg_confidence, char_confidences
class LightLicensePlatePreprocessor:
"""轻量化车牌图像预处理器"""
def __init__(self, target_height=32, target_width=128):
self.target_height = target_height
self.target_width = target_width
# 定义图像变换
self.transform = transforms.Compose([
transforms.Resize((target_height, target_width)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def preprocess_numpy_array(self, image_array):
"""预处理numpy数组格式的图像"""
try:
# 确保图像是RGB格式
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
# 如果是BGR格式转换为RGB
if image_array.dtype == np.uint8:
image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)
# 转换为PIL图像
if image_array.dtype != np.uint8:
image_array = (image_array * 255).astype(np.uint8)
image = Image.fromarray(image_array)
# 应用变换
tensor = self.transform(image)
# 添加batch维度
tensor = tensor.unsqueeze(0)
return tensor
except Exception as e:
print(f"图像预处理失败: {e}")
return None
def LPRNinitialize_model():
"""
初始化轻量化CRNN模型
返回:
bool: 初始化是否成功
"""
global lightcrnn_model, lightcrnn_decoder, lightcrnn_preprocessor, device
try:
# 设置设备
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"LightCRNN使用设备: {device}")
# 初始化组件
lightcrnn_decoder = LightCTCDecoder()
lightcrnn_preprocessor = LightLicensePlatePreprocessor(target_height=32, target_width=128)
# 创建模型实例
lightcrnn_model = LightweightCRNN(
img_height=32,
num_classes=lightcrnn_decoder.num_classes,
hidden_size=160
)
# 加载模型权重
model_path = os.path.join(os.path.dirname(__file__), 'best_model.pth')
if not os.path.exists(model_path):
raise FileNotFoundError(f"模型文件不存在: {model_path}")
print(f"正在加载LightCRNN模型: {model_path}")
# 加载检查点,处理可能的模块依赖问题
try:
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
except (ModuleNotFoundError, AttributeError) as e:
if 'config' in str(e) or 'Config' in str(e):
print("检测到模型文件包含config依赖尝试使用weights_only模式加载...")
try:
# 尝试使用weights_only=True来避免pickle问题
checkpoint = torch.load(model_path, map_location=device, weights_only=True)
except Exception:
# 如果还是失败创建一个更完整的mock config
import sys
import types
# 创建mock config模块
mock_config = types.ModuleType('config')
# 添加可能需要的Config类
class Config:
def __init__(self):
pass
mock_config.Config = Config
sys.modules['config'] = mock_config
try:
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
finally:
# 清理临时模块
if 'config' in sys.modules:
del sys.modules['config']
else:
raise e
# 处理不同的模型保存格式
if isinstance(checkpoint, dict):
if 'model_state_dict' in checkpoint:
# 完整检查点格式
state_dict = checkpoint['model_state_dict']
print(f"检查点信息:")
print(f" - 训练轮次: {checkpoint.get('epoch', 'N/A')}")
print(f" - 最佳验证损失: {checkpoint.get('best_val_loss', 'N/A')}")
else:
# 精简模型格式(只包含权重)
print("加载精简模型(仅权重)")
state_dict = checkpoint
else:
# 直接是状态字典
state_dict = checkpoint
# 加载权重
lightcrnn_model.load_state_dict(state_dict)
lightcrnn_model.to(device)
lightcrnn_model.eval()
print("LightCRNN模型初始化完成")
# 统计模型参数
total_params = sum(p.numel() for p in lightcrnn_model.parameters())
print(f"LightCRNN模型参数数量: {total_params:,}")
return True
except Exception as e:
print(f"LightCRNN模型初始化失败: {e}")
import traceback
traceback.print_exc()
return False
def LPRNmodel_predict(image_array):
"""
轻量化CRNN车牌号识别接口函数
参数:
image_array: numpy数组格式的车牌图像已经过矫正处理
返回:
list: 包含最多8个字符的列表代表车牌号的每个字符
例如: ['', 'A', '1', '2', '3', '4', '5', ''] (蓝牌7位+占位符)
['', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
"""
global lightcrnn_model, lightcrnn_decoder, lightcrnn_preprocessor, device
if lightcrnn_model is None or lightcrnn_decoder is None or lightcrnn_preprocessor is None:
print("LightCRNN模型未初始化请先调用LPRNinitialize_model()")
return ['', '', '', '0', '0', '0', '0', '0']
try:
# 预处理图像
input_tensor = lightcrnn_preprocessor.preprocess_numpy_array(image_array)
if input_tensor is None:
raise ValueError("图像预处理失败")
input_tensor = input_tensor.to(device)
# 模型推理
with torch.no_grad():
outputs = lightcrnn_model(input_tensor) # (seq_len, batch_size, num_classes)
# 移除batch维度
outputs = outputs.squeeze(1) # (seq_len, num_classes)
# CTC解码
predicted_text, confidence, char_confidences = lightcrnn_decoder.decode_with_confidence(outputs)
print(f"LightCRNN识别结果: {predicted_text}, 置信度: {confidence:.3f}")
# 将字符串转换为字符列表
char_list = list(predicted_text)
# 确保返回至少7个字符最多8个字符
if len(char_list) < 7:
# 如果识别结果少于7个字符用'0'补齐到7位
char_list.extend(['0'] * (7 - len(char_list)))
elif len(char_list) > 8:
# 如果识别结果多于8个字符截取前8个
char_list = char_list[:8]
# 如果是7位补齐到8位以保持接口一致性第8位用空字符或占位符
if len(char_list) == 7:
char_list.append('') # 添加空字符作为第8位占位符
return char_list
except Exception as e:
print(f"LightCRNN识别失败: {e}")
import traceback
traceback.print_exc()
return ['', '', '', '', '0', '0', '0', '0']
def create_lightweight_model(model_type='lightweight_crnn', img_height=32, num_classes=66, hidden_size=160):
"""创建增强版轻量化模型"""
if model_type == 'lightweight_crnn':
return LightweightCRNN(img_height, num_classes, hidden_size=hidden_size)
else:
raise ValueError(f"Unknown lightweight model type: {model_type}")
if __name__ == "__main__":
# 测试轻量化模型
print("测试LightCRNN模型...")
# 初始化模型
success = LPRNinitialize_model()
if success:
print("模型初始化成功")
# 创建测试输入
test_input = np.random.randint(0, 255, (32, 128, 3), dtype=np.uint8)
# 测试预测
result = LPRNmodel_predict(test_input)
print(f"测试预测结果: {result}")
else:
print("模型初始化失败")

1190
main.py

File diff suppressed because it is too large Load Diff

5
parking_config.json Normal file
View File

@@ -0,0 +1,5 @@
{
"free_parking_duration": 5,
"billing_cycle": 3,
"price_per_cycle": 5.0
}

View File

@@ -1,100 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
LPRNet接口真实图片测试脚本
测试LPRNET_part目录下的真实车牌图片
"""
import cv2
import numpy as np
import os
from LPRNET_part.lpr_interface import LPRNinitialize_model, LPRNmodel_predict
def test_real_images():
"""
测试LPRNET_part目录下的真实车牌图片
"""
print("=== LPRNet真实图片测试 ===")
# 初始化模型
print("1. 初始化LPRNet模型...")
success = LPRNinitialize_model()
if not success:
print("模型初始化失败!")
return
# 获取LPRNET_part目录下的图片文件
lprnet_dir = "LPRNET_part"
image_files = []
if os.path.exists(lprnet_dir):
for file in os.listdir(lprnet_dir):
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
image_files.append(os.path.join(lprnet_dir, file))
if not image_files:
print("未找到图片文件!")
return
print(f"2. 找到 {len(image_files)} 个图片文件")
# 测试每个图片
for i, image_path in enumerate(image_files, 1):
print(f"\n--- 测试图片 {i}: {os.path.basename(image_path)} ---")
try:
# 使用支持中文路径的方式读取图片
image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
if image is None:
print(f"无法读取图片: {image_path}")
continue
print(f"图片尺寸: {image.shape}")
# 进行预测
result = LPRNmodel_predict(image)
print(f"识别结果: {result}")
print(f"识别车牌号: {''.join(result)}")
except Exception as e:
print(f"处理图片 {image_path} 时出错: {e}")
import traceback
traceback.print_exc()
print("\n=== 测试完成 ===")
def test_image_loading():
"""
测试图片加载方式
"""
print("\n=== 图片加载测试 ===")
lprnet_dir = "LPRNET_part"
if os.path.exists(lprnet_dir):
for file in os.listdir(lprnet_dir):
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
image_path = os.path.join(lprnet_dir, file)
print(f"\n测试文件: {file}")
# 方法1: 普通cv2.imread
img1 = cv2.imread(image_path)
print(f"cv2.imread结果: {img1 is not None}")
# 方法2: 支持中文路径的方式
try:
img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
# img2 = cv2.resize(img2,(128,48))
print(f"cv2.imdecode结果: {img2 is not None}")
if img2 is not None:
print(f"图片尺寸: {img2.shape}")
except Exception as e:
print(f"cv2.imdecode失败: {e}")
if __name__ == "__main__":
# 首先测试图片加载
test_image_loading()
# 然后测试完整的识别流程
test_real_images()

View File

@@ -2,6 +2,7 @@ import cv2
import numpy as np import numpy as np
from ultralytics import YOLO from ultralytics import YOLO
import os import os
from PIL import Image, ImageDraw, ImageFont
class LicensePlateYOLO: class LicensePlateYOLO:
""" """
@@ -45,7 +46,7 @@ class LicensePlateYOLO:
print(f"YOLO模型加载失败: {e}") print(f"YOLO模型加载失败: {e}")
return False return False
def detect_license_plates(self, image, conf_threshold=0.5): def detect_license_plates(self, image, conf_threshold=0.6):
""" """
检测图像中的车牌 检测图像中的车牌
@@ -113,19 +114,38 @@ class LicensePlateYOLO:
print(f"检测过程中出错: {e}") print(f"检测过程中出错: {e}")
return [] return []
def draw_detections(self, image, detections): def draw_detections(self, image, detections, plate_numbers=None):
""" """
在图像上绘制检测结果 在图像上绘制检测结果
参数: 参数:
image: 输入图像 image: 输入图像
detections: 检测结果列表 detections: 检测结果列表
plate_numbers: 车牌号列表与detections对应
返回: 返回:
numpy.ndarray: 绘制了检测结果的图像 numpy.ndarray: 绘制了检测结果的图像
""" """
draw_image = image.copy() draw_image = image.copy()
# 转换为PIL图像以支持中文字符
pil_image = Image.fromarray(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(pil_image)
# 尝试加载中文字体
try:
# Windows系统常见的中文字体
font_path = "C:/Windows/Fonts/simhei.ttf" # 黑体
if not os.path.exists(font_path):
font_path = "C:/Windows/Fonts/msyh.ttc" # 微软雅黑
if not os.path.exists(font_path):
font_path = "C:/Windows/Fonts/simsun.ttc" # 宋体
font = ImageFont.truetype(font_path, 20)
except:
# 如果无法加载字体,使用默认字体
font = ImageFont.load_default()
for i, detection in enumerate(detections): for i, detection in enumerate(detections):
box = detection['box'] box = detection['box']
keypoints = detection['keypoints'] keypoints = detection['keypoints']
@@ -133,6 +153,11 @@ class LicensePlateYOLO:
confidence = detection['confidence'] confidence = detection['confidence']
incomplete = detection.get('incomplete', False) incomplete = detection.get('incomplete', False)
# 获取对应的车牌号
plate_number = ""
if plate_numbers and i < len(plate_numbers):
plate_number = plate_numbers[i]
# 绘制边界框 # 绘制边界框
x1, y1, x2, y2 = map(int, box) x1, y1, x2, y2 = map(int, box)
@@ -140,30 +165,53 @@ class LicensePlateYOLO:
if class_name == '绿牌': if class_name == '绿牌':
box_color = (0, 255, 0) # 绿色 box_color = (0, 255, 0) # 绿色
elif class_name == '蓝牌': elif class_name == '蓝牌':
box_color = (255, 0, 0) # 蓝色 box_color = (0, 0, 255) # 蓝色
else: else:
box_color = (128, 128, 128) # 灰色 box_color = (128, 128, 128) # 灰色
cv2.rectangle(draw_image, (x1, y1), (x2, y2), box_color, 2) # 在PIL图像上绘制边界框
draw.rectangle([(x1, y1), (x2, y2)], outline=box_color, width=2)
# 构建标签文本
if plate_number:
label = f"{class_name} {plate_number} {confidence:.2f}"
else:
label = f"{class_name} {confidence:.2f}"
# 绘制标签
label = f"{class_name} {confidence:.2f}"
if incomplete: if incomplete:
label += " (不完整)" label += " (不完整)"
# 计算文本大小和位置 # 计算文本大小
font = cv2.FONT_HERSHEY_SIMPLEX bbox = draw.textbbox((0, 0), label, font=font)
font_scale = 0.6 text_width = bbox[2] - bbox[0]
thickness = 2 text_height = bbox[3] - bbox[1]
(text_width, text_height), _ = cv2.getTextSize(label, font, font_scale, thickness)
# 绘制文本背景 # 绘制文本背景
cv2.rectangle(draw_image, (x1, y1 - text_height - 10), draw.rectangle([(x1, y1 - text_height - 10), (x1 + text_width, y1)],
(x1 + text_width, y1), box_color, -1) fill=box_color)
# 绘制文本 # 绘制文本
cv2.putText(draw_image, label, (x1, y1 - 5), draw.text((x1, y1 - text_height - 5), label, fill=(255, 255, 255), font=font)
font, font_scale, (255, 255, 255), thickness)
# 转换回OpenCV格式
draw_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
# 绘制关键点和连线使用OpenCV
for i, detection in enumerate(detections):
box = detection['box']
keypoints = detection['keypoints']
incomplete = detection.get('incomplete', False)
x1, y1, x2, y2 = map(int, box)
# 根据车牌类型选择颜色
class_name = detection['class_name']
if class_name == '绿牌':
box_color = (0, 255, 0) # 绿色
elif class_name == '蓝牌':
box_color = (0, 0, 255) # 蓝色
else:
box_color = (128, 128, 128) # 灰色
# 绘制关键点和连线 # 绘制关键点和连线
if len(keypoints) >= 4 and not incomplete: if len(keypoints) >= 4 and not incomplete: